ICUAS'22 Paper Abstract

Close

Paper FrB3.5

Souli, N. (University of Cyprus), Kolios, Panayiotis (University of Cyprus), Ellinas, G. (University of Cyprus)

Adaptive Frequency Band Selection for Accurate and Fast Positioning Utilizing SOPs

Scheduled for presentation during the Regular Session "UAS Communications" (FrB3), Friday, June 24, 2022, 12:50−13:10, Divona-1

2022 International Conference on Unmanned Aircraft Systems (ICUAS), June 21-24, 2022, Dubrovnik, Croatia

This information is tentative and subject to change. Compiled on April 24, 2024

Keywords Frequency Management, Sensor Fusion, UAS Applications

Abstract

Signals of opportunity (SOPs) are a promising technique that can be used for relative positioning in areas where global navigation satellite system (GNSS) information is unreliable or unavailable. This technique processes features of the various signals transmitted over a broad wireless spectrum to enable a receiver to position itself in space. This work examines the frequency selection problem in order to achieve fast and accurate positioning using only the received signal strength (RSS) of the surrounding signals. Starting with a prior belief, the problem of searching for a frequency band that best matches a predicted location trajectory is investigated. To maximize the accuracy of the position estimate, a ranking-and-selection problem is mathematically formulated. A knowledge-gradient (KG) algorithm from optimal learning theory is proposed that uses correlations in the Bayesian prior beliefs of the frequency band values to dramatically reduce the algorithm’s processing time. The technique is experimentally tested for a practical scenario of an unmanned aerial vehicle (UAV) moving around a GPS-denied environment, with obtained results demonstrating its validity and practical applicability.

 

 

All Content © PaperCept, Inc.

This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2024 PaperCept, Inc.
Page generated 2024-04-24  14:18:08 PST  Terms of use