ICUAS'22 Paper Abstract

Close

Paper FrA3.2

Sivakumar, Anush Kumar (Nanyang Technological University), Che Man, Mohd Hasrizam (Nanyang Technological University), Low, Kin Huat (Nanyang Technological University)

Preliminary Ground Risk Tiering for Small Unmanned Aerial Vehicles (sUAV) in Metropolitan Environments

Scheduled for presentation during the Regular Session "Risk and Safety Issues" (FrA3), Friday, June 24, 2022, 09:20−09:40, Divona-1

2022 International Conference on Unmanned Aircraft Systems (ICUAS), June 21-24, 2022, Dubrovnik, Croatia

This information is tentative and subject to change. Compiled on April 18, 2024

Keywords Risk Analysis, Levels of Safety, Reliability of UAS

Abstract

Unmanned aircraft systems (UAS) are anticipated to increase in the future and be employed for a variety of applications such as parcel delivery, structural inspections, aerial photography, and surveillance. However, the growth of the UAS industry is impeded by delayed operational approvals and risk assessments. This is likely due to the limited knowledge on the third-party risk (TPR) of UAS operation in the environment. For metropolitan environments like Singapore, the operation of UAS pose high risk to the population on ground due to high population density. Hence, it is of vital importance to assess the ground risk of UAS operations and to subsequently demarcate low, medium, and high areas within the city. In our preliminary study, a ground risk framework, adapted from Joint Authorities for Rulemaking of Unmanned Systems (JARUS) Specific Operations Risk Assessment (SORA), and a semi-quantitative ground risk matrix was established to quantitatively generate UAS failure rate thresholds as well as perform ground risk tiering of neighborhoods. Ground risk mapping was illustrated for UAS of four different maximum take-off weight (MTOW). It was observed that larger UAS had increased ground risk especially in areas with highly dense population. Study of ground risk in urbanized environments will provide insights on the level of safety required for UAS operations. This could aid aviation authorities in formulating comprehensive risk assessments and reduce the time required to approve UAS operations in metropolitan environments. However, it is noteworthy that further studies are required to validate the results of the risk matrix.

 

 

All Content © PaperCept, Inc.

This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2024 PaperCept, Inc.
Page generated 2024-04-18  23:54:16 PST  Terms of use