ICUAS'17 Paper Abstract

Close

Paper WeC2.2

DARBARI, VAIBHAV (Delhi Technological University), Gupta, Saksham (Delhi Technological University), Verma, Om Prakash (Delhi Technological University)

Dynamic Motion Planning for Aerial Surveillance on a Fixed-Wing UAV

Scheduled for presentation during the "Path Planning - III" (WeC2), Wednesday, June 14, 2017, 17:00−17:20, Salon AB

2017 International Conference on Unmanned Aircraft Systems, June 13-16, 2017, Miami Marriott Biscayne Bay, Miami, FL,

This information is tentative and subject to change. Compiled on April 26, 2024

Keywords Path Planning, Navigation, See-and-avoid Systems

Abstract

We present an efficient path planning algorithm for an Unmanned Aerial Vehicle surveying a cluttered urban landscape. A special emphasis is on maximizing area surveyed while adhering to constraints of the UAV and partially known and updating environment. A Voronoi bias is introduced in the probabilistic roadmap building phase to identify certain critical milestones for maximal surveillance of the search space. A kinematically feasible but coarse tour connecting these milestones is generated by the global path planner. A local path planner then generates smooth motion primitives between consecutive nodes of the global path based on UAV as a Dubins vehicle and taking into account any impending obstacles. A Markov Decision Process (MDP) models the control policy for the UAV and determines the optimal action to be undertaken for evading the obstacles in the vicinity with minimal deviation from current path. The efficacy of the proposed algorithm is evaluated in an updating simulation environment with dynamic and static obstacles.

 

 

All Content © PaperCept, Inc.

This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2024 PaperCept, Inc.
Page generated 2024-04-26  20:14:51 PST  Terms of use