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Abstract: This paper investigates the problem of sparse attack isolation and distributed secure state estimation (SSE)
for remote sensor network in an attack-prone environment. The attack considered in the present paper is a variant of
the sparse sensor attack model, and is characterized by the number of sensors clusters that can be compromised at each
moment. By analyzing the worst-case scenario in the presence of the considered attack, an attack detection and isolation
mechanism based on the weighted communication design is provided to block the spread of the attack across the observer
network. Moreover, based on the attack isolation, a distributed SSE algorithm is constructed to ensure globally consistent
state estimation. Finally, a numerical simulation is provided to validate the effectiveness of the proposed conditions and
algorithm.
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1. INTRODUCTION
The security and reliability of cyber-physical systems

(CPSs) have raised concerns within the control and in-
formation communities [1, 2]. One critical issue in this
context is the secure state estimation problem for sensor
network, which has gained extensive attention from re-
searchers [3–5]. Roughly speaking, research on the SSE
problems can be classified into two categories: one that
explores how to optimally generate the sparse attacks at
the attacker’s standpoint; while the other investigates how
to resist malicious attacks from the defender’s point-of-
view.

As a resource-constrained attacker, the priority is to
create stealthy attacks that manipulate observed values to
diverge from the true ones. The optimal attack strategy is
one that is both hard to detect and easy to deploy, and thus
far-reaching [6]. Recently, there has been a vast amoun-
t of research work that covers multiple scenarios [7–9].
Moreover, a convex relaxation algorithm was proposed in
[10] to maximize the trace of the remote estimation error
covariance, as well as an optimal sparse attack strategy
was given. In [11], the existence and design conditions
of the false data injection attack with energy stealthiness
were given. Based on the system dynamics model, [12]
proposed the distributed optimal algorithm for robust s-
parse undetectable attacks. Furthermore, to counter the
SSE, two regimes of sparse undetectable and unidentifi-
able sensor attacks were proposed in [13]. As a result, re-
search to explore more efficient and universal anti-attack
algorithm for specific sparse attacks is still valuable.

Additionally, for the defender, one focus on devel-
oping effective attack isolation and SSE protocols that
can function in partially compromised sensor measure-
ments [14–22]. Among them, in [16–18], effective dis-
tributed SSE protocols and attack isolation algorithms

† Xuqiang Lei is the presenter of this paper.

were proposed for CPSs against the sparse sensor attack-
s, respectively. A Luenberger-like observer combined
with the saturation-innovation update (SIU) idea to re-
sist the location-varying sparse attacks could be found in
[20–22]. In addition, [23] proposed a fast state estimation
algorithm by reducing the sparse attack mismatch search
candidates with the equivalent measurement of the sen-
sors. However, the above foundation, which is built on
more benign channels than compromised ones, may face
failure as malicious attacks become more sophisticated.
This paper namely aims to explore the conditions to relax
this restriction and propose algorithms to improve SSE.

To combat the growing threat of attacks, researchers in
[24, 25] proposed leveraging the diversity of sensor com-
ponents. The concept rests on the idea that attackers can
only target specific types of components and that large-
scale network systems tend to have a variety of hardware
and software implementations with varying weaknesses.
Again, we incorporated this concept into our paper to de-
velop the findings.

In view of the above research developments, a weaker
constrained sparse sensor attack is proposed in this pa-
per by clustering sensors in terms of the resistance to at-
tacks. Based on the weighted interaction design of the
sensor network, the convergence of the state estimation
error under extreme worst-case attack scenarios is ana-
lyzed, and the construction form of the dynamic decay
threshold function is proposed, which ensures accurate
isolation of malicious attacks and the effective implemen-
tation of SSE.

In section 2, a general description of the notations, and
the system and observer are provided. Section 3 gives the
main results and analysis of this paper. Section 4 shows a
numerical simulation to illustrate the effectiveness of this
study and the conclusion is presented in Section 5.
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2. SYSTEM OVERVIEW
2.1. Notation and graph Description

In this paper, the Rn denotes the n-dimensional Eu-
clidean space, 0n represent n-dimensional zero vector.
The symbol [N ] denotes the set {1, . . . , N}. For a set of
vectors xi ∈ Rn with i ∈ [N ], the default x = col{xi} =
[xT

1 , . . . , x
T
N ]T . The notation ∥ · ∥ is the Euclidean vector

norm, the symbol ⌊·⌋ represents the floor function. For
an arbitrary set S, |S| means the cardinality of S.

For a set of matrices Mi(i ∈ [N ]), similarly defined
by default M = [MT

1 , . . . ,MT
N ]T and M̃ = Diag{Mi}

means the diagonal block matrix with Mi as the element.
And MS̄ denotes the matrix derived after making Mi = 0
with i ∈ S in M . Then for any given matrices X and Y ,
the Kronecker product denoted as X ⊗ Y , the symbol
X+ is defined as the pseudo-inverse of X , and He{X}
denote X +XT .

A weighted undirected graph, denoted by G =
(V, E ,A), consists of a nodes set V = [N ], an edge set
E ⊂ V × V , and a weighted adjacency matrix A with
aij > 0 if (i, j) ∈ E and aij = 0 otherwise, in which
the (i, j) ∈ E ⇔ (j, i) ∈ E indicate that nodes i and
j can transmit information to each other. The Laplacian
matrix of G is denoted as L = [lij ]N with lij = −aij if
i ̸= j and lii =

∑N
j=1 aij . Beside, if graph G is connect-

ed, it is known that the matrix L is symmetric and semi-
positive definite with its eigenvalues can be arranged as
0 = λ1(L) < λ2(L) ≤ · · · ≤ λN (L).

2.2. System Description
Consider a sensor network designed to measure a con-

tinuous dynamic process in an attack-prone environment,
where each node represents a measurement device con-
nected through an undirected connected graph G.

Specifically, the dynamics are modeled as

ẋ(t) = Ax(t) +Bu(t), (1a)
ỹi(t) = Cix(t) + ai(t), i ∈ V = [N ], (1b)

where x(t) ∈ Rn, u(t) ∈ Rq are the system state and
the control input, respectively. And ỹi(t) ∈ Rpi denote
the measured output of the i-th sensor that could be com-
promised by an arbitrary attack injection ai(t). And A,B
are the intra-system matrix, Ci ∈ Rpi×n is the local mea-
surement matrix for sensor i, which satisfies itself to be
column full-rank. And the global measurement matrix is
expressed in the form C = [CT

1 , . . . , C
T
N ]T .

The sensors can be divided into two disjoint subsets,
the attacked set At = {i|ai(t) ̸= 0pi} and the normal set
Nt = {i|ai(t) = 0pi}, depending on whether compro-
mised by the attacker. Then, the attack a(t) = col{ai(t)}
is said to be s-sparse if one has |At| ≤ s, and the subset
At can be unknown and time-varying.

To obtain the state estimate of system x(t) securely,
the following notion of s-sparse observable usually needs
to be introduced.

Definition 1: The sensor network (1b) is said to be s-
sparse observable, if for any subset Γ ⊂ V with |Γ| = s,
the matrix CΓ̄ is column full-rank.
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Fig. 1: An illustration example for distributed SSE.

Evidently, the sensor network (1b) is (N−1)-sparsely
observable here. From the conclusion in [15–22], it is
clear that an SSE algorithm can be performed in the case
of arbitrary s̃ (s̃ ≤ ⌊N−1

2 ⌋)-sparse sensor attacks.
Typically, a column full-rank matrix Ci indicates that

the i-th observer can directly access the global system
state. However, each local observer is incapable of ver-
ifying the accuracy of their sensor measurements inde-
pendently, since the vulnerability of individual sensors to
distortion in an attack-prone environment. It is, there-
fore, essential to detect and isolate sparse attacks through
distributed interactions among neighbors and ensure the
overall effectiveness of the global SSE.

2.3. Distributed Observers with Attack Isolation
Drawing inspiration from previous collaborative ob-

server in [20–22], a similar distributed one-by-one ob-
server architecture is constructed here to estimate the o-
riginal state of the system accurately. Fig.1 provides a
simple illustration example, in which the nodes and dot-
ted lines colored in red, indicate the maliciously attacked
sensors or wireless channels in the network. Conversely,
the rest are normal.

The observer is specifically constructed as follows

˙̂xi(t) = Ax̂i(t) +Bu(t) + θvi(t) + δi(t)βLizi(t), (2)

where x̂i(t) is the estimation of x(t) by the i-th observer,
and Li is the observation matrix designed as Li = C+

i .
Also, θ and β are gain parameters to be designed, the
control vi(t) and residual zi(t) are expressed as follows

vi(t) = −
N∑
j=1

lij x̂j(t), zi(t) = ỹi − Cix̂i(t).

Additionally, δi(t) indicates the isolation factor for the
attack ai(t), its design is based on the variation of the SIU
algorithm in [20] as follows

δi(t) =

{
1, ∥QLizi(t)∥ ≤ ∥Q∥γ(t),
0, otherwise, (3)

where the matrix Q and threshold γ(t) will be designed
later. The δi(t) = 1 signals that data ỹi(t) can be trust-
ed for innovation, otherwise its is an anomaly that needs
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to be isolated. On the basis of the successful isolation
of all malicious attacks, the global convergence of the s-
tate estimation can be ensured by relying on distributed
observer (2).

3. MAIN RESULT
3.1. Attacks Framework

The goal of the attacker is to generate multiple non-
zero attack sequences {ai(t)} with limited resources,
which would lead to the creation of inaccurate state
estimations by the observers (e.g., (2)). Nevertheless,
the heterogeneity among sensors, which have differen-
t brands and security features, limits the attacker’s ability
to compromise them. As a result, the attacker can usually
only attack a limited selection of sensors, generally only
a few types at a time.

Sensor Clusters: Inspired by the above thought, sen-
sors are planned into m distinct clusters based on their
vulnerability against attack, and each sensor is unique-
ly mapped to the index set M = {c1, . . . , cm}. Con-
sequently, the entire sensor set can be re-described as
V = {Vc1 , . . . ,Vcm}.

Assumption 1: Each observer i ∈ Vcl (l ∈ [m]) is
aware of the number of sensor types m and the number
ri = |Vcl | of nodes that are the same cluster as it.

Remark 1: In order to satisfy Assumption 1 holds,
which can usually be assigned at the time of initial net-
work deployment, the design can be offline.

Then, with the above assumptions, each observer
could broadcasts its message ri to the neighbors, and
thus the communication weight aij = 1/rj can be set
here if (j, i) ∈ E . Further, for the Laplacian matrix L
constructed as above, one has gTL = 0TN with gT =
1

|T | [1/r1, · · · , 1/ri, · · · , 1/rN ] established.
Definition 2: The attacks signal a(t) = col{ai(t)} is

weak s-sparse, if the number of clusters destroyed by the
attack at any given moment is at most s.

Remark 2: In this setting, all sensors within a cluster
are equated to one, thus expecting to improve the toler-
ance of the SSE algorithm to sparse attacks in response
to resource-constrained adversaries.

3.2. Threshold Function Design
In this subsection, a suitable threshold function γ(t) is

designed based on the worst-case estimation error anal-
ysis, such that it could enables the accurate detection of
malicious attacks while maintaining the benign operation
of state estimation.

Denote the estimation error as ei(t) = x̂i(t) − x(t),
i ∈ V , and assume that the initial estimation error is upper
bounded by η, i.e., maxi∈V{∥ei(0)∥} ≤ η. Then, con-
sider the threshold function designed as γ(t) = γ1(t) +
γ2(t), with γ1(t) and γ2(t) constructed as follows

γ̇1(t) = (α− θλL
2 + 2

√
Nβ)γ1(t) + 2

√
Nβγ2(t),

γ̇2(t) = [α− (1− sf )β] γ2(t) + sfβγ1(t),
(4)

where sf = 2s/m, the initial values are picked to satisfy
γ1(0) =

√
Nη and γ2(0) = η. The parameter α ≥ 0 and

matrix P = QTQ > 0 are the solution to the following
generalized eigenvalue minimization problem:

min α (5)

s.t.
1

2
(PA+ATP ) < αP,

which can be solved by the ‘gevp’ solver for LMI.
The gains θ > 0 and β > 0 are designed to satisfy the

following LMI holds:

He

{[
α− λL

2 θ + 2
√
Nβ 2

√
Nβ

sfβ α− (1− sf )β

]}
< 0. (6)

Remark 3: From the LMI (6), it is evident that the
system (4) is asymptotically stable, i.e., limt→∞ γ(t) =
0. Following that, with the decreasing of γ(t), the unde-
tectable space of malicious attacks will gradually dimin-
ish, so that the detection and isolation of all attacks can
be ensured.

3.3. Distributed secure state estimation
In this subsection, the upper bound of the attack con-

straint for reaching an asymptotically estimation of the
original state of the system is analyzed and its theoreti-
cal proof is briefly given. Finally, based on the synthesis
analysis, an algorithm design for distributed SSE under
weak s-sparse attacks is provided.

The update of the estimation error ei(t) can be ob-
tained from (1)–(2) as

ėi(t) = Aei(t)− θ
N∑
j=1

lijej(t) + βδi(t)Lizi(t). (7)

Furthermore, the following error variables are intro-
duced to analyze the estimation performance:

ẽi(t) = ei(t)− ē(t), ē(t) = (gT ⊗ In)e(t),

where e(t) = coli∈V{ei(t)}.
Denote I = IN − 1NgT and Ĩ = I ⊗ In, one has

IL = LI = L and ẽ(t) = coli∈V{ẽi(t)} = Ĩe(t).
Hence, the following dynamics can be obtained:

˙̃e(t) = [IN ⊗A− θ(L ⊗ In)] ẽ(t) + βĨ∆̃tL̃Z̃(t), (8)

˙̄e(t) = (A− βIn)ē(t) + β
∑
i∈Nt

(1− δi(t))giei(t)

+ β
∑
i∈At

gi(ei(t) + δi(t)Lizi(t)), (9)

where ∆̃t = diag{δi(t)}⊗In and Z̃(t) = coli∈V{zi(t)},
and gi denotes the i-th element in vector g.

Theorem 1: Under Assumption 1, based on the
threshold function and observation gains designed in (4)-
(6). Then, the distributed observer (2) can reach the SSE
for system (1), i.e.,

lim
t→∞

∥x̂i(t)− x(t)∥ = 0, (10)

if the malicious sensor attack satisfies is weak s-sparse
with s < m/2.
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Algorithm 1 Clusters-based distributed SSE algorithm

Input: A, B, Ci, u(t), ỹi(t), x̂i(0), s;
1: Initialization: Assigning sensors to m clusters, and

obtaining inter-neighborhood weights aij ;
2: Solve (5) to obtain the feasible solution α, P and Q;
3: Compute the LMI (6) to obtain the gains θ, β;
4: while t > 0 do
5: Communicate with its neighbors to exchange

their respective state estimates x̂i(t)
6: Update the threshold function γ(t) as (4);
7: Calculate the residual zi(t) = ỹi(t)− Cix̂i(t);
8: if ∥QLizi(t)∥ ≤ ∥Q∥γ(t) then
9: δi(t) = 1;
10: else
11: δi(t) = 0;
12: end if
13: Update the state estimation x̂i(t) as in (2);
14: end while
Output: State estimate x̂i(t);

Proof: For the error system (8) and (9), consider the
following Lyapunov functions:

V1(t) = ∥(IN ⊗Q)ẽ(t)∥, V2(t) = ∥Qē(t)∥.

Firstly, from (3), there is δi(t)∥QLizi(t)∥ ≤ ∥Q∥γ(t)
holds. Hence, take the differential along (8) and (9) as
follows:

V̇1(t) = V −1
1 (t) · ẽT (t)P̃ ˙̃e(t)

(a)

≤ (α− θλL
2 )V1(t) + 2β∥∆̃tL̃Z̃(t)∥

≤ (α− θλL
2 )V1(t) + 2

√
Nβ∥Q∥γ(t),

V̇2(t)
(b)

≤ (α− β)V2(t) + βsf∥Q∥γ(t),

where P̃ = IN⊗P , and the inequation (a) is deduced due
to the fact that ∥I∥ < 2, xTPy ≤ ∥Qx∥∥Qy∥. Inequa-
tion (b) relies on δi(t) = 1 holds for all i ∈ Nt, which
will be shown in the subsequent proof.

Combining (4) with the fact that V1(0) ≤
√
Nη =

γ1(0) and V2(0) ≤ η = γ2(0), it follows V1(t) ≤ γ1(t)
and V2(t) ≤ γ2(t) hold for ∀t ≥ 0. Hence, from ei(t) =
ẽi(t) + ē(t), one has

∥Qei(t)∥ ≤ ∥(IN ⊗Q)ẽ(t)∥+ ∥Qē(t)∥ ≤ ∥Q∥γ(t).

holds for ∀i ∈ V .
Further, for ∀i ∈ Nt, it follows that ∥QLizi(t)∥ =

∥Qei(t)∥ ≤ ∥Q∥γ(t). Hence, one has δi(t) = 1 holds
for all i ∈ Nt.

In conclusion, from the fact that limt→∞ γ(t) = 0, it
follow that limt→∞ ∥ei(t)∥ = 0 hold for any i ∈ V .

Based on the above analysis and proof, it can be con-
cluded that each local observation node needs to perform
the operations of the following Algorithm 1 in parallel.

Remark 4: In short, a sensor network with multiple
heterogeneous brands can enhance the resistance of SSE

Fig. 2: An example of cyber attacks on UGV.
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Fig. 3: Network topology with 6 nodes and 3 clusters.

algorithm to sparse attacks, which mainly builds on the
intuition that an attacker can launch attacks more easily
against sensors that have been informed of the vulnerabil-
ities. It is worth noting that Algorithm 1 remains effective
in detecting any form of weak s-sparse attack (s < m/2),
as long as the sensor network satisfies Assumption 1.

4. SIMULATION EXAMPLE
In this section, to validate the effectiveness of the algo-

rithm, an example is borrowed from [5, 12] regarding the
distributed SSE of an Unmanned Ground Vehicle (UGV
is seen in Fig.2). Specifically, the dynamics of the UGV
is described as follows:
χ̇
v̇

θ̇
ω̇

 =


0 1 0 0
0 − B

M 0 0
0 0 0 1
0 0 0 Br

J



χ
v
θ
ω

+


0 0
1
M 0
0 0
0 1

J

[
F
T

]
,

where x = [χ, v, θ, ω]T represent the state of the posi-
tion, linear velocity, angular position and angular veloci-
ty, respectively. The parameters M = 2, J = 2, B = 1,
and Br = 1 shows the mechanical mass, inertia, trans-
lational friction coefficient and the rotational friction co-
efficient. The inputs are the force F = 2sin(2t) and the
torque T = 1. Then, six sensors from each of the 3 differ-
ent sensor clusters are randomly selected to satisfy the Ci

column full rank, and communicate based on the topolo-
gy shown in Fig.3. Consider the initial values picked as
x(0) = [0.5, 4, 0.5, 7]T in the simulation.

In order to overcome the weak s-sparse attack de-
scribed in 3.1, we performed simulations using the pro-
posed Algorithm 1 in this paper with initial estimates ran-
domly selected. In particular, during the runs of the algo-
rithm, a malicious adversary is considered to inject a ran-
domly generated malicious attack vector into a randomly
selected cluster in the sensors every 1 seconds, and then
the simulation results are obtained as shown below.

Taking advantage of the ‘gevp’ solver for LMI in the
MATLAB robust toolbox, one obtain α = 5.4887×10−8
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Fig. 4: The actual attack injection channels and the sensor
channels isolated by the observer.

Fig. 5: The norms ∥Qei(t)∥ and the threshold ∥Q∥γ(t).

and the following parameters:

Q =


0.0173 0.0010 0 0
0.0001 0.5736 0 0

0 0 0.0173 0.0010
0 0 0.0010 0.5736

 .

Next, the gain θ = 194.013 and β = 1.694 are ob-
tained by solving the LMI (6). The specific observation
estimation and attack detection and isolation results can
be found in Fig.4–7. Specifically, to illustrate the effec-
tiveness of detection and isolation against weak f -sparse
attacks, the sensor channels injected by the attack at each
moment and the channels isolated by the defender are p-
resented in Fig.4. Clearly, it can be seen that Algorithm 1
can effectively handle weak f -sparse attacks regardless
of any target modification made by the attacker. Thus, in
an attack-prone environment, the defender can enhance
the anti-attack capability of the algorithm 1 by adding
new sensor types.

The relationship regarding the threshold function
∥Q∥γ(t) and the detection term ∥Qei(t)∥ are shown in
Fig.5. It can be seen that the benign residual term never
exceeds the threshold function, and thus the measurement
data over the threshold can be identified as corrupted by
the attacker. Moreover, as the threshold function con-
verges to zero asymptotically, the survival space of mali-
cious attacks will be continuously compressed, so that all
non-zero attacks will eventually be detected and isolated.

Finally, the real-time path trajectory of the UGV and
the trajectory generated by the estimation of each observ-

Fig. 6: System dynamics trajectory and its estimation.

Fig. 7: State estimation error ei(t).

er are given in Fig.6, and the estimation error correspond-
ing to each state is shown in Fig.7. It can be seen from
this that the proposed Algorithm 1 is effective against
weak f -sparse attacks. At this point, the number of ma-
licious attacks may exceed half of the number of sensors
(e.g, in this example, the maximum number of attacks
could be 4 > (6− 1)/2).

5. CONCLUSION
In this paper, a distributed SSE algorithm that relies

on sensor clustering approach has been presented for an
attack-prone sensor network. A weak s-sparse attack has
been proposed by classifying the resistance of sensors to
attacks. Then, utilizing the above classification, a weight-
ed communication topology has been constructed and an
attack detection threshold has been designed based on
it. Finally, a distributed SSE algorithm design has been
proposed under the worst-case attack consideration. In
future work, the malicious attack model and the sensor
model constraints will be further improved in order to
expect the secure state estimation algorithm design to be
completed under global observable condition.
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