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Abstract: This study addresses the cooperative control of CAVs(Connected and Automated Vehicles) at Signal-free
Intersection. The purpose is to reduce fuel consumption by crossing intersection without stopping as much as possible
while ensuring safety. For this problem, We consider a two-stage control structure.The first stage is to calculate the
merging time of each CAV by solving mixed integer linear programming (MILP). In the second stage, each CAV solves
the optimal control problem and determines the input in time for the merging time. In this study, We propose an optimal
control method using control barrier function considering more realistic scenario, and a speed regulation zone to cross the
intersection at a pre-determined terminal speed. By using input corrections and trajectory tracking of speed and position,
simulation results show that fuel consumption can be reduced while ensuring safety. Finally, compared to conventional
research, the system achieves low fuel consumption, and demonstrating its superiority.
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1. INTRODUCTION
Traffic management at intersections is important in

terms of accidents and congestion on public roads. 2,583
traffic fatalities occurred in Japan in 2021, 46.6 % of
which were intersection-related [1]. The main cause of
these fatalities is human error. Currently, traffic signals
are the main cause of accidents and congestion at inter-
sections, and there are many problems to be solved.

CAVs (Connected and Automated Vehicles) is ex-
pected to be put into practical use. CAVs can commu-
nicate with each other and with the infrastructure to ad-
just the timing of crossing at intersections, and are ex-
pected to make intersections unsignalized. Signal-free
Intersection is expected to reduce traffic congestion and
improve throughput by reducing unnecessary stops, and
reduce traffic accidents by reducing human error through
the use of automated CAVs.

In general, control at Signal-free Intersection is a two-
stage problem, with the first stage determining the order
and time to cross the intersection, and the second stage
determining the control inputs for the vehicle to meet that
order and time. For the first stage, the first-in-first-out
(FIFO) method is often used to determine the crossing
order from a fairness perspective [2] , while the mixed in-
teger linear programming (MILP) method is used to de-
termine the crossing order and time from an efficiency
perspective [3, 4]. Other methods include game theory
[5] . For the second step, optimal control [2] and model
predictive control [6, 7] are used to determine the control
inputs. For optimal control, using control barrier func-
tions has been active in recent years [8, 9]. The advan-
tage of control barrier functions is that they can determine
control inputs without increasing the computational load,
even for complex dynamics.

Based on the above studies, this study proposes a more
realistic cooperative control method for CAVs at Signal-
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free Intersections that can consider air resistance and road
surface conditions by using control barrier functions and
disturbance observers. In addition, a speed regulation
zone is established to allow the vehicle to cross the inter-
section at a defined terminal speed. The proposed method
also allows vehicles to safely cross the intersection by
avoiding crossing at unrealistic speeds due to the empha-
sis on efficiency.

2. PROBLEM FORMULATION

2.1. Intersection Model
Consider the single-lane intersection model shown in

Fig. 1. The Control Zone (CZ) is defined as the area

Fig. 1 Intersection Model

within which the CAVs can communicate with the Co-
ordinator. The area where CAVs merge is defined as
the Merging Zone (MZ), and the Speed Regulation Zone
(SRZ) is defined as the area where speed is regulated to
enter the MZ at a terminal speed.

In the MZ, Conflict Point (CP) is set up as shown in
the following Fig. 2. CP refers to the point at which
CAVi is likely to conflict with CAVj entering the MZ
from another lane when crossing the MZ. Also, let the
lanes be denoted by lane1∼4, respectively.
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Fig. 2 Conflict Point

2.2. Vehicle Model
The vehicle Model used in this study is considered to

be a model with a torque τ as shown in Fig. 3.

Fig. 3 Vehicle Model

The equation of motion is

Mv̇(t) = fd(t)− fa(t)− fr(t)− fg(t) (1)

where

fd(t) =
τ(t)

Rw
, fa(t) =

1

2
ρAfCdv

2(t)

fr(t) = µMg cos θ, fg(t) = Mg sin θ

(2)

where fd is the driving force of the vehicle, fa is air resis-
tance , fr is rolling resistance, and fg is slope resistance.
M is the vehicle weight and Rw is the tire radius. Ex-
planations for each letter are given below. The vehicle
is equipped with automatic driving and communication
functions, and is configured as a CAV to perform cooper-
ative control using multiple vehicles.

Table 1 Symbol
Symbols Definition

M Weight of vehicle [kg]
Rw Tire radius [m]
ρ Air density [kg/m3]
Cd Air resistance coefficient
Af Vehicle frontal area [m2]
µ Rolling resistance coefficient
θ Road tilt angle [rad]

From the equations of motion, we have
1
2ρAfCdv

2
i (t) + µMg cos θ + Mg sin θ = F (vi(t)) to

represent the state space model of some CAVi as[
ṗi(t)
v̇i(t)

]
=

[
vi(t)

−F (vi(t))
M

]
+

[
0
1

MRw

]
τi(t) (3)

Where pi is the position of CAV, vi is the speed of CAV. In
addition, from the viewpoint of vehicle performance and
passenger comfort, the following input and speed con-
straints are set as shown in (4) below.

τmin ≤ τi(t) ≤ τmax

vmin ≤ vi(t) ≤ vmax

(4)

Let us assume that the following assumptions hold for
CAV.

Assumption 1: At Signal-free Intersection, only
CAVs of at least Level 4 shall be present, with no
communication problems such as errors or delays,
pedestrians, and all CAVs shall have the same width and
length, mass, and equipment.

2.3. Control Structure
In this study, Cooperative Control is divided into two

stages: one in which the Coordinator determines the opti-
mal merging time to enter the SRZ based on the informa-
tion from each CAV, and the other in which the CAV de-
termines the control inputs so that it can cross the MZ at
a predetermined speed and arrive at the SRZ at the merg-
ing time. In this case, we consider the control structure
shown in the following Fig. 4.

where Y s
i ≜ {ηi, pi, vi, tmi,prev} is the dataset sent

from CAVi to Coordinator, Y r
i ≜ {tm∗

i , pi(t
m∗

i ),vi(t
m
i

∗)}
is the dataset sent from Coordinator to CAVi. Also, ηi is
the travel lane tmi

∗ is the optimal merging time calculated
by the Coordinator and tmi,prev is the merging time calcu-
lated by the Coordinator at the previous sampling time.

Fig. 4 Control Structure

2.4. Speed Regulation Zone
SRZ performs deceleration using a predetermined

speed regulation time tsri as shown in Fig. 5.

Fig. 5 Speed Regulation Zone

In doing so, the Coordinator uses the right/left turn in-
formation from the CAV to regulate the speed to a prede-
termined terminal speed. Fixing the end speed prevents
the vehicle from entering the MZ at an unrealistic speed.
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3. COORDINATOR-LEVEL
OPTIMIZATION

This chapter shows how Coordinator determines the
optimal merging time for each CAV, which is the time
at which each CAV crosses the intersection as soon as
possible to avoid conflicts with other CAVs.

3.1. Constraints
First, consider the minimum merging time calculated

by Coordinator to avoid missing the merging time due
to CAV performance. Calculate the time it takes for the
CAV to accelerate with the maximum torque and deceler-
ate with the minimum torque to reach the terminal speed
vm. Using the distance D = L − Ls − pi(t) from the
current position pi(t) to the SRZ

tmi,min =
MRw(vmax − vi)

τmax
+

MRw(vm − vmax)

τmin

+
D − MRw(v2

max−v2
i )

2τmax
− MRw(v2

m−v2
max)

2τmin

vmax
. . . (a)

tmi,min =
MRw(v′ − vi)

τmax
+

MRw(vm − v′)

τmin

where v′ =

√√√√ 2D
MRw

+ vi2

τmax
− vm2

τmin

1
τmax

− 1
τmin

. . . (b)

(5)
(a) is the case where the maximum speed in the equation
(4) is reached between the current position and the en-
trance to the SRZ. When the maximum speed is reached,
the vehicle cannot accelerate anymore, so it runs at a con-
stant speed and then decelerates so that it can eventually
enter the SRZ at the terminal speed. (b) is the case where
the maximum speed is not reached. In this case, the vehi-
cle does not travel at a constant speed, but accelerates at
maximum torque and decelerates at minimum torque to
enter the SRZ at the terminal speed.

Next, constraints are set to avoid a rear-end headway
with a preceding vehicle (CAVk) in the same lane. rear-
end headway constraint as

tmi − tmk ≥ αi(t)

vm,k
= hR, ηk = ηi (6)

where αi(t) = δ+lk+φvi(t). δ is the safety distance be-
tween the CAVk rear bumper and the CAVi front bumper,
φ is the reaction time of CAVi, and lk is the length of the
CAVk. η is a lane of CAVs. With this constraint, rear-
end headway can be avoided in the MZ. In order to avoid
rear-end headway in the SRZ, a speed regulation time tsri
is added to the equation (6). The equation for the rear-end
headway constraint is

(tmi + tsri )− (tmk + tsrk ) ≥ hR (7)

The rear-end headway constraint here is to prevent rear-
end headway from reaching the SRZ until exiting the MZ.
In other words, rear-end headway on the road are not con-
sidered. Therefore, it is necessary for CAVs to communi-
cate with each other to avoid rear-end headway along the
way, independently of the Coordinator.

Next, consider a constraint to avoid a lateral headway
with a CAV running in a different lane. The likelihood
of a headway is determined from Fig. 2. As shown in
Fig. 6, the Conflict Zone is a circle of radius r centered at
the CP. The time taken by the CAVi to enter the Conflict
Zone after entering the MZ is tei , the time taken by the
CAVi to exit the Conflict Zone after entering the MZ is
Let tli be the time from entering the MZ to exiting the
Conflict Zone.

Fig. 6 Lateral Headway Time

Using these to consider the lateral headway con-
straints, we consider the speed regulation time tsri as well
as the rear-end headway constraints, and we obtain

(tmi + tei + tsri ) +Mbigbij ≥ (tmj + tlj + tsrj ) + hL

AND

(tmj + tej + tsrj ) +Mbig(1− bij) ≥ (tmi + tli + tsri ) + hL

(8)
where hL is the time required for the CAV to com-

pletely exit the Conflict Zone. Since the position of the
CAV is assumed to be that of the front bumper in this
case, the time until the rear bumper of the CAV com-
pletely exits the Conflict Zone is assumed to be the time.

In addition, if the equation is expressed with OR, it
becomes discontinuous, so it is expressed with an AND
equation using the Big-M method. where b is a binary
variable.

In summary, the optimal merging times calculated by
Coordinator can be obtained by solving

min
T,B,Tabs

w

N(t)∑
i=1

tmi + (1− w)

N(t)∑
i=1

tabsi

subject to: tmi ≥ tmi,min

(tmi + tsri )− (tmk + tsrk ) ≥ hR ηi = ηk

(tmi + tei + tsri ) +Mbigbij

≥ (tmj + tlj + tsrj ) + hL

(tmj + tej + tsrj ) +Mbig(1− bij)

≥ (tmi + tli + tsri ) + hL

tabsi ≥ (tmi − tmi,prev)

tabsi ≥ −(tmi − tmi,prev)

(9)

where tabsi is the difference from previous merging time,
and the purpose of this term is to avoid abrupt changes in
the merging time. And T is a set of tmi , T abs

i is a set of
tabsi . N(t) is the total number of CAVs in the CZ. Also,
B is a set of binary variables bij to determine the order in
which CAVi and CAVj intersect.
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4. CAV-LEVEL OPTIMIZATION
In this section, We formulate the problem of determin-

ing the control input by the CAV by solving the optimal
control problem based on the optimal merging time cal-
culated by Coordinator. In addition to speed and input
constraints, a cooperative control framework is presented
to allow the CAV to cross an intersection without conflict
with other CAVs .

4.1. Formulation of the optimal control problem
The optimal control problem solved by each CAV is as

follows .
min
τi(t)

∫ tmi

t0i

1

2
τ2i (t)dt

subject to: CAV model(3)
Input and Speed Constraint(4)
pk(t)− pi(t) ≥ φvi(t) + δ

given pi(t
0
i ) , vi(t

0
i ) , vi(t

m
i ) , pi(t

m
i )

(10)

The constraints are an input constraint, a speed constraint,
and a rear-end headway constraint to prevent conflict on
the road. The t0i is the current time.

We want to solve the optimal control problem and ob-
tain an analytical solution, but it is difficult to obtain an
analytical solution because vi is included in the resistance
term such as air resistance in the (10). Therefore, the ana-
lytical solution in the ideal state with no resistance is ob-
tained, and the obtained analytical solution is followed.

τ∗i = C1t+ C2 (11)

v∗i =
1

MRw

(
1

2
C1t

2 + C2t+ C3

)
(12)

p∗i =
1

MRw

(
1

6
C1t

3 +
1

2
C2t

2 + C3t+ C4

)
(13)

where C1, C2, C3, C4 are integral constants and the
boundary conditions pi(t0i ) , vi(t

0
i ) , vi(t

m
i ) , pi(t

m
i ) can

be obtained using the following equation.

4.2. Input Correction
In the real environment, even if the analytical solu-

tion is used, the speed and position will deviate from the
trajectory when there is a resistance such as (2). There-
fore, in order to eliminate modeling errors, we consider a
method to correct the input using a disturbance observer
such as the following .

τ refi (t) = τ∗i (t) + d̂i ·Rw (14)

where d̂i is the estimated resistance F (vi(t)). The pur-
pose of this disturbance observer is to estimate the resis-
tance F (v(t)), and add it to the input to cancel resistance
out and track the trajectory.

4.3. Formulation with Control Barrier Function
For these constraints in (10), the input τi is not in-

cluded in the constraint equation. It is difficult to deter-
mine the inputs such that the constraints are not violated
if they become active. Therefore, we consider a formu-
lation with a control barrier function. For simplicity, the
vehicle model (3) is

ẋ = f(x) + g(x)u (15)

Then define the control barrier function. First, we define
the safety set.

Definition 1: safety set of CAVi

Consider a C1 class function h : X → R and a set C ⊂ X
expressed as follows.

C = {xi ∈ X | h(xi) ≥ 0} (16)

If the state xi of CAVi satisfies x ∈ C, then C is a safe
set.
This safety set is only for CAVi. For the rear-end head-
way constraint, information on the preceding vehicle,
CAVk, is also required, so a 2 CAVs safety set is also
needed to be defined.

Definition 2: safety set of CAVi , CAVk

Consider a C1 class function H : Xi × Xk → R and a
safe set C′ ⊂ Xi ×Xk expressed as follows.

C′ = {(xi, xk) ∈ Xi ×Xk | H(xi, xk) ≥ 0}
(17)

Next, we define a forward invariant set obtained from a
safe set.

Definition 3: forward invariant set
A set C is said to be a forward invariant set if the initial
state x(0) of the system (3) is contained in the set C and
x ∈ C at any time t ∈ [0,∞).
This forward invariant set can likewise be defined for the
safe set of 2 CAVs. Next, we define the extended class K
function.

Definition 4: extended class K function
Consider a continuous function α : R → R. When this
function is strictly monotonically increasing and satisfies
α(0) = 0, it is called an extended class K function.
Finally, we define the control barrier function.

Definition 5: control barrier function
Let h be a C1 function and let C ⊂ X be the safety set
of CAVi for the vehicle model (3). If there exists an ex-
tended class K function α that satisfies the following in-
equality (18), then the function h is called a control bar-
rier function defined on C.

sup
ui∈U

ḣ(xi) + α(h(xi)) ≥ 0 (18)

Here, ḣ(xi) can be expressed as ḣ(xi) = Lfh(xi) +
Lgh(xi)ui by the Lie derivative We can define the fol-
lowing set Ki(xi) from this control barrier function h.

Definition 6: Ki(xi)

Ki(xi) = {ui ∈ U : ḣ(xi) + α(h(xi)) ≥ 0} (19)
Definition 7: control barrier function

Let C′ be the safety set of CAVi and CAVk, and let
H : Xi × Xk → R be a C1 function. If there exists
an extended class K function that satisfies the following
inequality for the safety set C′, H is called a control bar-
rier function.

sup
ui∈U

Ḣ(xi, xk) ≥ −α(H(xi, xk)) (20)

We can define the following set KH(x) from this control
barrier function H

Definition 8: KH(x)
KH(x) = {u ∈ U : Ḣ(xi, xk) ≥ −α(H(xi, xk))}

(21)
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A control barrier function is then defined. Using the in-
put obtained from the control barrier function, it can be
said that the input stays within the safe set, i.e., forward
invariance is satisfied.

Theorem 1: Let C be a safe set of CAVi. When h(xi)
is a control barrier function, the Lipschitz continuous in-
put u ∈ Ki(xi) satisfies forward invariance on the safe
set.

Proof: Since ḣ(xi) is always greater than or equal
to 0 at the boundary of the safe set, it satisfies forward
invariance by Nagumo’s theorem [10].

Theorem 2: Let C′ be the safe set of CAVi and CAVk,
and H : Xi × Xk → R be a C1 class function. When
H is a control barrier function, the Lipschitz continuous
ui ∈ KH(xi, xk) satisfies forward invariance on the safe
set.

Proof: We consider z =

[
xi

xk

]
, u′ =

[
ui

uk

]
,

F (z) =

[
f(xi)
f(xk)

]
, G(z) =

[
g(xi)
g(xk)

]
we can set H(xi, xk) = H(z), which satisfies forward
invariance by Nagumo’s theorem as well as Theorem 1.
[9, 11].

Therefore, it is confirmed that forward invariance is
satisfied. Using this control barrier function, the optimal
control problem (10) can be rewritten

min
τi(t)

∫ tmi

t0i

1

2

(
τrefi (t)− τi(t)

)2
dt

subject to: CAV model(3)
τi − τmin ≥ 0

τmax − τi ≥ 0

−
F (vi(t))

M
+

1

MRw
τi(t) + vi(t)− vmin ≥ 0

F (vi(t))

M
−

1

MRw
τi(t) + vmax − vi(t) ≥ 0

vk(t)− vi(t) +
F (vi(t))

M
−

φ

MRw
ui(t)

+ xk(t)− xi(t)− φvi(t)− δ ≥ 0

given pi(t
0
i ) , vi(t

0
i ) , vi(t

m
i ) , pi(t

m
i )

(22)

The objective function
(
τ refi (t)− τi(t)

)2

is used to

track the torque τ refi after input correction.

4.4. Optimal control problem in Speed Regulation
Zone

Finally, there is the optimal control problem in SRZ.
speed regulation time tsr is determined in advance, and
rear-end headway in SRZ are taken into account by Co-
ordinator. Therefore, the optimal control problem solved
by CAVi is the expression that eliminates the rear-end
headway constraint from (22).

min
τi(t)

∫ tmi +tsri

tmi

1

2

(
τrefi (t)− τi(t)

)2
dt

subject to: CAV model(3)
input constraints(22)
speed constraints (22)
given pi(t

m
i ) , vi(t

m
i ) vi(t

m
i + tsri ) , pi(t

m
i + tsri )

(23)

5. SIMULATION VERIFICATION

5.1. Simulation Conditions
In order to verify the simulation, we set the parameters

as in Table 2.
Table 2 Simulation parameter

Parameter Symbol Value
Number of vehicles Nmax 50

Vehicle arrival rate(1/h) fa 720
Control Zone(m) L 300

Speed Regulation Zone(m) Ls 30
Size of Merging Zone(m) S 10

Radius of conflict point zone(m) r 4
Weight of MILP w 0.3

Length of CAV(m) li 4
Standstill safe distance(m) δ 8

CAV reaction time(s) φ 0.8
Speed Regulation time(straight,right,left)(s) tsrS , tsrR , tsrL 3.0,3.6,4.5

Terminal Speed (straight,right,left)(m/s) vS , vR, vL 10,7,3
Speed Constrains(m/s) vmin, vmax 0,16

Input Constraints (kgm2/s2 ) umin, umax -1200,1200

The slope of lane1 (lane from the west) and lane2 (lane
from the north) is set to 1◦, and the slope of lane3 (lane
from the east) and lane4 (lane from the south) is set to
a downhill slope of −1◦. The poles of the disturbance
observer are set to [-84,-85,-86].

5.2. Simulation Results
These graphs of the simulation results are shown be-

low: Fig. 7 shows the input of each CAV, and Fig. 8
shows the speed of each CAV. Fig. 9 shows the position
of each CAV. The center of the position in Fig. 9 is the
MZ, and the top or bottom is the entrance to the CZ. Fig.
9 shows the trajectory of each CAV from its entry into
the CZ to its arrival at the center MZ. In addition, the
trajectory is drawn from the top when coming from the
north and east, and from the bottom when coming from
the south and west.

Fig. 7 Input for each CAV

Fig. 8 Speed for each CAV
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Fig. 9 Position for each CAV

Fig. 7 shows that the input constraints are obeyed. Fig.
8 shows that the speed constraint is satisfied. The termi-
nal speed shows that there are three speeds: go straight,
turn left, and turn right, respectively. Fig. 9 shows that
there is no conflict before passing through the MZ.

The formulation of optimal control using the control
barrier function allows for cooperative control without
violating arbitrary constraints. In addition, the SRZs al-
lowed the vehicles to pass through the intersection at a
defined terminal speed.

Finally, we compare the fuel consumption. For fuel
consumption, we use the polynomial model proposed in
[8] and [9] are used for comparison. Both of them use op-
timal control with control barrier functions as a method.
The method used in [8] is to correct input by expressing
the position of the optimal solution and the current posi-
tion in terms of fractions. The method is expressed as

τ refi (t) =
p∗i (t)

pi(t)
τ∗i (t) (24)

Next, the method used in [9] uses PI control from the
speed to correct the input. The difference between the
speed and position of the optimal solution and the current
speed and position is used. The method is expressed as

τrefi (t) = τ∗i (t) +Kp(p
∗
i (t)− pi(t)) +Kv(v

∗
i (t)− vi(t))

(25)

The proposed method compares these methods with a
method without input correction (None). The proposed
method uses a disturbance observer to correct input, as
shown in (14). The fuel consumption values are a sum-
mary of the ones of 50 CAVs. And the other parame-
ters are the same as in Table 2. In this study, we com-
pare these input correction methods. Since these litera-
tures are based on double lines and direct comparison is
not possible, only the input correction methods are com-
pared. Also, the gains Kp,Kv of Pi control are 35000
and 30000, respectively.

The results are shown in the following table.
Table 3 Fuel Consumption
Method Fuel Consuption(L)

Proposed 0.9098
Fractional type [8] 0.9758

PI control [9] 0.9332
None 0.9758

It can be seen that the proposed method has the low-
est fuel consumption. The results of Document A are not

significantly different from those of the case without in-
put correction. In the case of the B, it can be seen that the
fuel consumption is reduced by the input correction.

6. CONCLUSION
In this study, we proposed an algorithm for coopera-

tive control of CAVs at Signal-free Intersection that takes
into account more realistic conditions such as air resis-
tance and road surface conditions. Specifically, we pro-
posed a safe optimal control method that does not vio-
late constraints using a control barrier function, an input
correction method using a disturbance observer that can
cope with modeling errors, and a method that can cross an
intersection without conflicts while maintaining the ter-
minal speed by setting a deceleration zone at a predeter-
mined speed.

Future challenges include making the system operable
in mixed environments with human-driven vehicles and
reducing the computational load, and decentralizing the
system.
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